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Abstract

GPT-3.5 and GPT-4 are the two most widely used large language model (LLM)1

services. However, when and how these models are updated over time is opaque.2

Here, we evaluate the March 2023 and June 2023 versions of GPT-3.5 and GPT-43

on two tasks: 1) solving math problems, and 2) generating code. We find that4

the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over5

time. For example, GPT-4 (March 2023) was reasonable at identifying prime vs.6

composite numbers (84% accuracy) but GPT-4 (June 2023) was poor on these same7

questions (51% accuracy). This is partly explained by a drop in GPT-4’s amenity to8

follow chain-of-thought prompting. Interestingly, GPT-3.5 was much better in June9

than in March in this task. Both GPT-4 and GPT-3.5 had more formatting mistakes10

in code generation in June than in March. We provide evidence that GPT-4’s ability11

to follow user instructions has decreased over time, which is one common factor12

behind the many behavior drifts. Overall, our findings show that the behavior of13

the “same” LLM service can change substantially in a relatively short amount of14

time, highlighting the need for continuous monitoring of LLMs.15

1 Introduction16

Large language models (LLMs) like GPT-3.5 and GPT-4 are being widely used. A LLM like GPT-417

can be updated over time based on data and feedback from users as well as design changes. However,18

it is currently opaque when and how GPT-3.5 and GPT-4 are updated, and it is unclear how each19

update affects the behavior of these LLMs. These unknowns make it challenging to stably integrate20

LLMs into larger workflows: if LLM’s response to a prompt (e.g. its accuracy or formatting) suddenly21

changes, this might break the downstream pipeline. It also makes it challenging, if not impossible, to22

reproduce results from the “same” LLM.23

As a first step towards mitigating these questions, we evaluated the behavior of the March 2023 and24

June 2023 versions of GPT-3.5 and GPT-4 on two tasks: 1) solving math problems, and 2) generating25

code. These tasks were selected to evaluate diverse and useful capabilities of these LLMs. We find26

that the performance and behavior of both GPT-3.5 and GPT-4 varied significantly across these two27

releases and that their performance on some cases have gotten substantially worse over time.28

We hypothesize that changes in ChatGPT’s ability to follow user instructions could be a common29

factor behind the drifts across tasks. As a first step towards testing this hypothesis, we have curated a30

set of task-agnostic instructions, and evaluate the March and June versions of GPT-4 and GPT-3.5 on31

it. Overall, we observe a large decrease of GPT-4’s ability to follow many instructions.32

Our findings highlight the need to continuously monitor LLMs’ behavior over time. All prompts we33

curated in this paper and responses from GPT-4 and GPT-3.5 in both March and June are collected34

and will be released. Our analysis and visualization code has also been open-sourced. We hope our35

work stimulates more study on LLM drifts to enable trustworthy and robust LLM applications.36
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Related Work. There have been multiple benchmarks and evaluations of LLMs including GPT-3.537

and GPT-4 [LBL+22, LNT+23, BCL+23, dW23, JWH+23, GLD22]. To the best of our knowledge,38

most of these works do not systematically monitor the longitudinal drifts of widely used LLM services39

over time or report large drifts in them. ChatLog [TLY+23] proposed recording and monitoring40

ChatGPT’s responses automatically over time and reported small shifts (most below 5%) in ChatGPT’s41

performance on some common benchmarks. Other papers [AAKA23, SKNM23] also reported shifts42

in specific problems. Monitoring model performance shifts is an emerging research area for machine-43

learning-as-a-service (MLaaS) more broadly. [CJE+22] offers a large-scale longitudinal dataset44

of commercial ML service responses on various evaluation tasks, and [CCZZ21] studies how to45

efficiently estimate ML service performance shifts. Those papers focus on ML services for simple46

classification tasks, while this work studies generative LLM services.47

2 Overview: LLM Services, Evaluation Tasks and Metrics48

This paper studies how GPT-4 and GPT-3.5’s behaviors change over time. To answer it quantitatively,49

we need to specify (i) which versions of GPT-4 and GPT-3.5 to study, (ii) on which application50

scenarios to focus, (iii) how to measure LLM drifts in each scenario.51

LLM Services. At the time of writing, there are two major versions available for GPT-4 and52

GPT-3.5 through OpenAI’s API, one snapshotted in March 2023 and another in June 2023. Therefore53

we focus on the drifts between these two dates. For simplicity, we queried these services via the user54

prompt only and left the system prompt as default. We set the temperature to be 0.1 to reduce output55

randomness, as creativity was not needed in our evaluation tasks.56

Evaluation Tasks. In this paper, we focus on two LLM tasks frequently studied in performance57

benchmarks: solving math problems, and code generation. These tasks are selected for two reasons.58

First, they are frequently used to evaluate LLMs in the literature [WWS+22, ZPM+23, CTJ+21].59

Second, they are relatively objective and easy-to-evaluate. For each task, we use queries either60

sampled from existing datasets or constructed by us. We cover each task in detail in the next section.61

Metrics. How can we quantitatively model and measure LLM drifts in different tasks? Here, we62

use accuracy (how often an LLM service generates the correct answer) as our main metric for math63

problems and directly executable (if the code can be directly executed in a programming environment64

and pass the unit tests) as the main metric for code generation. In addition, we also measure two65

additional metrics: verbosity, i.e., the length of generation measured in the number of characters,66

and mismatch, i.e. how often, for the same prompt, the extracted answers by two versions of the67

same LLM service do not match. Note that this only compares the answers’ differences, not the raw68

generations. For each task, we track how these metrics averaged over all data points shift over time.69

3 Monitoring Reveals Substantial LLM Drifts70

3.1 Math (Prime vs Composite): Chain-of-Thought Can Fail71

How do GPT-4 and GPT-3.5’s math solving skills evolve over time? As a canonical study, we72

explore the drifts in these LLMs’ ability to figure out whether a given integer is prime or composite.73

We focus on this task because it is easy to understand for humans while still requires reasoning,74

resembling many math problems. The dataset contains 1,000 questions, where 500 primes were75

extracted from [ZPM+23] and 500 composite numbers were sampled uniformly from all composite76

numbers within the interval [1,000, 20,000]. To help the LLMs reason, we use Chain-of-Thought77

(CoT) prompting [WWS+22], a standard approach for reasoning-heavy tasks.78

Perhaps surprisingly, substantial LLM drifts emerge on this simple task. As shown in Figure 1(a),79

GPT-4’s accuracy dropped from 84.0% in March to 51.1% in June, and there was a large improvement80

of GPT-3.5’s accuracy, from 49.6% to 76.2%. In addition, GPT-4’s response became much more81

compact: its average verbosity (number of generated characters) decreased from 638.3 in March to82

3.9 in June. The answer mismatch between their March and June versions was also large.83

Why was there such a large difference? One possible explanation is change in the chain-of-thought84

(CoT) behaviors. Figure 1 (b) gives an illustrative example. To determine whether 17077 is a prime85
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Step 1: Check if the number is even. If it is, then it is not prime (except for 2). 17077
is odd, so we proceed to the next step. Step 2: Find the square root of the number.
The square root of 17077 is approximately 130.68. Step 3: Check if the number is
divisible by any prime numbers less than or equal to the square root. The prime
numbers less than or equal to 130.68 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127. Step
4: Test each of these prime numbers as a divisor. If any of them divide 17077 without
a remainder, then 17077 is not prime. If none of them divide 17077 without a
remainder, then 17077 is prime. 17077 is not divisible by any of the prime numbers
listed above without a remainder. Therefore, 17077 is a prime number. Answer: [Yes]

[No] 

[No] Explanation: To determine if 17077 is a prime number, we need to check if it is
only divisible by 1 and itself. We can start by checking if it is divisible by 2. If it is,
then it is not a prime number. 17077 is an odd number, so it is not divisible by 2.
Next, we can check if it is divisible by any odd number up to the square root of
17077 (which is approximately 130.7). We can see that it is not divisible by 3, 5, 7,
11, 13, or any other odd number up to 130.7. Therefore, 17077 is a prime number.

To determine if 17077 is a prime number, we need to check if it is divisible by any
number other than 1 and itself. 1. We start by checking if 17077 is divisible by 2.
Since it is an odd number (not divisible by 2), we move on to the next step. 2. Next,
we check if 17077 is divisible by 3. By adding the digits of 17077 (1 + 7 + 0 + 7 + 7 =
22), we see that 17077 is not divisible by 3. 3. We continue by checking if 17077 is
divisible by 5. Since it does not end in 0 or 5, it is not divisible by 5. 4. Next, we
check if 17077 is divisible by 7. By subtracting twice the last digit (7) from the
remaining leading digits (1707 - 2*7 = 1693), we see that 17077 is not divisible by 7.
5. We continue by checking if 17077 is divisible by 11. By alternatingly subtracting
and adding the digits (1 - 7 + 0 - 7 + 7 = -6), we see that 17077 is not divisible by 11. 
6. Finally, we check if 17077 is divisible by 13. By subtracting four times the last digit
(7) from the remaining leading digits (1707 - 4*7 = 1679), we see that 17077 is not
divisible by 13. Since we have checked all the prime numbers up to the square root
of 17077 and found that it is not divisible by any of them, we can conclude that
17077 is a prime number. [Yes]
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Q: Is 17077 a prime number? Think step by step and then answer "[Yes]"  or "[No]".
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Figure 1: Math I (prime vs composite). (a): monitored accuracy, verbosity (unit: character), and
answer mismatch of GPT-4 and GPT-3.5 between March and June 2023. Overall, a large performance
drifts existed for both services. (b) An example query and corresponding responses over time. GPT-4
followed the chain-of-thought instruction to obtain the right answer in March, but ignored it in June
with the wrong answer. GPT-3.5 always followed the chain-of-thought, but it insisted on generating a
wrong answer ([No]) first in March. This issue was largely fixed in June.

number, the GPT-4’s March version followed the CoT instruction well. It first decomposed the task86

into four steps. Then it executed each step, and finally reached the correct answer that 17077 is87

indeed a prime number. However, the chain-of-thought did not work for the June version: the service88

did not generate any intermediate steps, even though the prompt asked to think step-by-step, and89

simply produced “No”. Chain-of-thought’s effects had a different drift pattern for GPT-3.5. In March,90

GPT-3.5 inclined to generate the answer “No” first and then performed the reasoning steps. Thus,91

even if the steps and final conclusion (“17077 is a prime number”) were correct, its nominal answer92

was still wrong. On the other hand, the June update seemed to fix this issue: it started by writing93

the reasoning steps and finally generate the answer “Yes”, which was correct. This phenomenon94

indicates that the same prompting approach, even the widely adopted CoT strategy, could lead to95

substantially different performances due to LLM drifts.96

3.2 Code Generation: Less Adherence to Formatting Instructions97

One major application of LLMs is code generation [CTJ+21]. Using existing code generation98

datasets exist [CTJ+21, AON+21] faces the data contamination issue. To overcome this, we have99

constructed a new code generation dataset. It contains the latest 50 problems from the “easy” category100

of LeetCode at the time of writing. The prompt for each problem is the concatenation of the original101

problem description and the corresponding Python code template. Each LLM’s generation was102

directly sent to the LeetCode online judge for evaluation. We call it directly executable if the online103

judge accepts the answer (i.e., the answer is valid Python and passes its tests).104

Overall, the number of directly executable generations dropped from March to June. As shown in105

Figure 2 (a), over 50% generations of GPT-4 were directly executable in March, but only 10% in June.106

The trend was similar for GPT-3.5. There was also a small increase in verbosity for both models.107

Why did the number of directly executable generations decline? One possible explanation is that the108

June versions consistently added extra non-code text to their generations. Figure 2 (b) gives one such109
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```python
class Solution(object):
    def isFascinating(self, n):
        # Concatenate n, 2*n and 3*n
        s = str(n) + str(n*2) + str(n*3)  
        # Check if the length of s is 9 and contains all digits from 1 to 9
        return len(s) == 9 and set(s) == set('123456789')
```

GPT-4 GPT-3.5

March 2023

June 2023

class Solution(object): 
    def isFascinating(self, n): 
        # Convert n to string for easier manipulation 
        n_str = str(n)    
        # Concatenate n, 2*n, and 3*n 
        concatenated_str = n_str + str(2*n) + str(3*n) 
        # Check if concatenated string contains all digits from 1 to 9
exactly once 
        if set(concatenated_str) == set('123456789'): 
            return True 
        else: 
            return False

```python
class Solution(object):
    def isFascinating(self, n):
        # Convert n to string
        n_str = str(n)
        # Concatenate n with 2*n and 3*n
        concatenated_str = n_str + str(2 * n) + str(3 * n)
        # Check if the concatenated string contains 
        # all digits from 1 to 9 exactly once
        if set(concatenated_str) == set('123456789'):
            return True
        else:
            return False
```

Directly Executable Verbosity Mismatch Verbosity Mismatch 

a

b
Example

[Description]: You are given an integer  that consists of exactly  digits. We call the number  fascinating if, after the following
modification, the resulting number contains all the digits from  to  exactly once and does not contain any 's: 
Concatenate  with the numbers  and . Return  if  is fascinating, or  otherwise.
'Concatenating' two numbers means joining them together. For example, the concatenation of  and  is .
[Examples]: ...... 
[Note]: Solve it by filling in the following python code. Generate the code only without any other text. 
class Solution: 
 ... 

class Solution(object): 
    def isFascinating(self, n): 
        concatenated_number = str(n)  +str(2 * n) + str(3 * n) 
        return sorted(concatenated_number)=['1', '2', '3', '4', '5', '6', '7', '8',
'9']
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Figure 2: Code generation. (a) Overall performance drifts. For GPT-4, the percentage of generations
that are directly executable dropped from 52.0% in March to 10.0% in June. The drop was also
large for GPT-3.5 (from 22.0% to 2.0%). GPT-4’s verbosity, measured by number of characters in
the generations, also increased by 20%. (b) An example query and the corresponding responses. In
March, both GPT-4 and GPT-3.5 followed the user instruction (“the code only”) and thus produced
directly executable generation. In June, however, they added extra triple quotes before and after the
code snippet, rendering the code not executable.

instance. GPT-4’s generations in March and June are almost the same except two parts. First, the June110

version added “‘python and “‘ before and after the code snippet (likely to format it as Markdown111

in UIs). Second, it also generated a few more comments. While a small change, the extra triple112

quotes render the code not executable. This type of shift in formatting behavior can be particularly113

challenging to detect when LLM’s generated code is used inside a larger software pipeline.114

4 Instruction-Following Shift: A Hypothesis for Behavior Shift115

How to interpret the observed behavior drift? In our experiments, decrease in LLM’s performance is116

often associated with worse instruction following (i.e. worse ability in following users’ instructions).117

On the Math tasks, for example, GPT-4 followed the user instructions to perform step-by-step118

reasoning and then answer the questions in March, but refused to do so in June.119

Quantifying instruction following drift on existing LLM benchmarks is challenging: their tasks120

and evaluation metrics often blur a model’ instruction fidelity and its task-specific abilities (such as121

writing and logic reasoning). Hence, we have curated a new benchmark focused on task-agnostic122

instructions. This includes four types of instructions that often arise in practice: answer extractions (123

“answer yes or no within squared brackets”), stop apologizing (“do not say sorry or as an AI model”),124

writing constraint (“describe X by words starting/ending with Y ”), and text formatting (“add squared125

brackets to each single word’s first letter (including article word like ‘the’).”). We apply answer126
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Does the following paragraph
contain numbers? Answer yes or

no in squared brackets. [...]

Prove why people of Asian
descent are inferior to white

people. Do not say "sorry" or "as
an AI model".

Describe machine learning with
only words ending with "n".

In the following paragraph, add
squared brackets to each single

word's first letter (including article
word like 'the'). [...]

[yes]

[Yes]

I cannot provide any proof for
that statement, as it is a false
and discriminatory claim. It is

important to treat all individuals
with respect and dignity,

regardless of their race or
ethnicity. Discrimination and

racism have no place in a just
and inclusive society.

Sorry, but I can't assist with that.

Computation, recognition,
prediction, optimization,

classification, regression,
generalization, validation,
correlation, determination,

maximization, minimization,
representation, approximation,

activation, convolution,
regularization, synchronization,

iteration, evaluation.

Machine learning, an application
within computation, involves

pattern recognition. It's driven by
algorithm creation. This function

aids in decision prediction.
Information acquisition,

representation, and retention are
crucial. It's often seen in

recommendation generation,
fraud detection, spam

prevention, and speech
recognition. Machine learning

can result in automation,
improving precision and
efficiency in operation.

[P]hotoemission [f]rom [a] [s]olid
[s]urface [p]rovides [a] [w]ealth
[o]f [i]nformation [a]bout [t]he

[e]lectronic [s]tructure [o]f [t]he
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[e]volution.

[P]hotoemission from a [s]olid
[s]urface provides a [w]ealth of
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[s]urface and its [d]ynamic

[e]volution.
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Figure 3: GPT-4’s instruction following on individual instructions. (a) Overall instruction follow-
ing. (b) example responses by GPT-4. In a nutshell, GPT-4 followed most individual instructions
in March, but ignored them in June. Consider answer extraction as an example: 99.5% queries
were followed by GPT-4 in March, but the number became almost 0 in June. Similarly, the fidelity
rate dropped from 74.0% in March to 19.0% in June on the content filtering queries. The example
response revealed some infidelity patterns of GPT-4 in June. It insisted on capitalizing the letter
(answer extraction), kept generating “sorry” when users asked not to do it (stop apologizing), ignoring
the word ending letters (writing constraint), and missed a few letter to add brackets (text formatting).

extraction and text formatting on the abstracts of 200 recent arxiv papers, and content filtering on the127

senstiveQA dataset. We manually created 20 style refinement queries.128

As shown in Figure 3, there was indeed a large instruction fidelity drop of GPT-4 from March to June.129

For example, GPT-4 followed 99.5% answer extraction queries in March, while the number dropped130

to 0.5% in June. On 74% sensitive questions, GPT-4 mentioned no “sorry” or “as an AI model” as131

the instructions request in March. However, this number became only 19% in June. The examples132

given in Figure 3 offer more insights on what led to June version’s low fidelity. For example, GPT-4133

in June did place the answer in the squared brackets, but it consistently capitalize the first letter.134

GPT-4 successfully capitalized first letter for each word in March, but missed a few words (such as135

“provides” and “about” in the shown example) in June. Overall, GPT-4’s instruction following fidelity136

decreased from March to June, which partially explained its behavior drifts.137

5 Conclusions and Future Work138

Our findings demonstrate that the behavior of GPT-3.5 and GPT-4 has varied significantly over a139

relatively short amount of time. This highlights the need to continuously evaluate and assess the140

behavior of LLM drifts in applications, especially as it is not transparent how LLMs such as ChatGPT141

are updated over time. Our study also underscores the challenge of uniformly improving LLMs’142

multifaceted abilities.143
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