
SOLON: Communication-efficient
Byzantine-resilient Distributed Training via

Redundant Gradients
Lingjiao Chen1, Leshang Chen2, Hongyi Wang3, Edgar Dobriban4, and Susan B. Davidson2

1Dept. of Computer Sciences, Stanford Univ., 2Dept. of Computer and Information Science, Univ. of Pennsylvania
3Dept. of Computer Sciences, UW–Madison, 4Statistics Dept., Wharton School, Univ. of Pennsylvania

lchen362@wisc.edu, chenleshang@gmail.com, hwang595@wisc.edu, dobriban@wharton.upenn.edu, susan@seas.upenn.edu

Abstract—There has been a growing need to provide Byzantine-
resilience in distributed model training. Existing robust dis-
tributed learning algorithms focus on developing sophisticated
robust aggregators at the parameter servers, but pay less at-
tention to balancing the communication cost and robustness.
In this paper, we propose SOLON, an algorithmic framework
that exploits gradient redundancy to provide communication effi-
ciency and Byzantine robustness simultaneously. Our theoretical
analysis shows a fundamental trade-off among computational
load, communication cost, and Byzantine robustness. We also
develop a concrete algorithm to achieve the optimal trade-
off, borrowing ideas from coding theory and sparse recovery.
Empirical experiments on various datasets demonstrate that
SOLON provides significant speedups over existing methods to
achieve the same accuracy, e.g., over 10× faster than BULYAN and
80% faster than DRACO. We also show that carefully designed
Byzantine attacks break SIGNUM and BULYAN, but do not affect
the successful convergence of SOLON.

I. INTRODUCTION

The growing size of datasets and machine learning models
has led to many developments in distributed training using
stochastic optimization [9]–[12], [26]. One of the most widely
used settings is the parameter server (PS) model [17], [20],
[21], where the gradient computation is partitioned among all
nodes, typically using stochastic gradient descent (SGD) or its
variants. A central PS then aggregates the calculated gradients
from all compute nodes to update the global model.

However, scaling PS models to large clusters introduces two
challenges: guarding against Byzantine attacks and managing
communication overhead. Byzantine attacks include erroneous
gradients sent from unreliable compute nodes due to power
outages, hardware or software errors, as well as malicious
attacks. The communication overhead of sending gradients to
the PS in large clusters can also be extremely high, potentially
dominating the training time [1], [5], [9], [31], [32], since the
number of gradients sent is linear in the number of nodes.

Although recent work has studied the problem of Byzantine
attacks under the PS model [2], [14], [33], the communication
overhead remains prohibitive. For example, [4], [6], [8],
[35] use robust aggregators at the PS to mitigate unreliable
gradients, while [5], [28] introduces algorithmic redundancy
to detect and remove Byzantine nodes. Robust aggregators
are computationally expensive due to their super-linear (often
quadratic) dependence on the number of nodes. They also

Comm.

Model Update

Grad.
Comp.

Parameter Server

g11+g12+
g21+g32+
g41+g42

Worker 1 Worker 2 Worker 3

g12+g22+
g21+g31+
g41+g42

g11+g12
+g22+g31
+g32+g42

g11+g21+
g31+g41

Attack

g12

g21

g32

g41

g12
g22

g31

g41

g11
g22

g31

g42

g11 g12

g21 g22

g31 g32

g41 g42

g12+g22+
g32+g42

g11

g42g42

g32

g21

g12

Worker 4

Figure 1. Example of SOLON, where the cluster consists of four compute
nodes. There are four two-dimensional gradient vectors, g1, g2, g3, g4, where
gradients gi = (gi1, gi2) are in different colors. To tolerate Byzantine workers,
each node computes four gradients. However, instead of sending a two-
dimensional vector to the PS, each node only sends a one-dimensional linear
combination of the elements in the local gradients. For instance, worker 1
computes and sends the scalar g11 + g12 + g21 + g32 + g41 + g42. Here,
the redundancy ratio r = 4 and the compression ratio rc = 2. The PS uses a
decoding scheme presented in Section II. Therefore SOLON can recover the
correct gradient with one Byzantine worker (4 ≥ 2× 1 + 2).

often have limited convergence guarantees under Byzantine
attacks, e.g., only establishing convergence in the limit, or
only guaranteeing the output of the aggregator has a positive
inner product with the true gradient. They often require strong
bounds on the dimension of the model. Although algorithmic
redundancy or coding-theoretic [5], [28] approaches offer
strong convergence guarantees, they have high communication
overhead. Thus, it remains an open question to simultaneously
provide Byzantine-resilience with strong guarantees and
communication efficiency for distributed learning.

To address this problem, we propose SOLON, a distributed
training framework leveraging algorithmic redundancy to
protect against Byzantine attacks, and ideas from sparse
recovery [25] and coding theory [28] to reduce communication
overhead. The approach is as follows: In a Byzantine-free PS
model with P compute nodes and B gradients to be computed,
at each iteration each of the P nodes computes B/P gradients,
and sends them to the PS. In SOLON, gradients are computed
redundantly to tolerate Byzantine failures; each node computes
rB/P gradients, incurring a computational redundancy ratio

of r. To reduce communication overhead, compressed gradients
are sent to the PS. For d-dimensional gradients, each node
only sends a d/rc-dimensional vector to the PS, where rc is
the compression ratio.

We show that under worst-case adversarial conditions where
the adversarial nodes have access to the complete data and
gradients, and can send arbitrary results to the PS, there is a fun-
damental trade-off among Byzantine-resilience, communication
overhead and computation cost. To tolerate s Byzantine nodes,
the redundancy ratio must satisfy r ≥ 2s+ rc. We provide a
concrete encoding and decoding technique for SOLON based
on Vandermonde matrices and building on Prony’s method
from signal processing [25], [34] that matches the optimal
condition r = 2s+ rc. An example is shown in Figure 1.

We implemented SOLON in Pytorch and conducted extensive
experiments on a large cluster. Our results show that SOLON
can provide significant speedups across various ML models
and datasets over existing methods, such as BULYAN [14] and
DRACO [5], shown in Figure 1(b) using ResNet-18 [15] on
CIFAR-10 [19] under a reverse gradient attack. In addition,
SOLON successfully defends against strong Byzantine attacks
such as “A little is enough” (ALIE) [2], on which some methods
such as BULYAN and SIGNUM [3] fail to converge or result in
significant accuracy loss, see Section III.

Our contributions include:
1) SOLON, a distributed training framework that exploits algo-

rithmic redundancy to simultaneously provide Byzantine-
resilience and communication efficiency.

2) Optimal trade-offs between Byzantine resilience, commu-
nication overhead, and computational cost.

3) A concrete encoding and decoding mechanism, which is
provably efficient and achieves this optimal trade-off.

4) Extensive experiments which show that SOLON exhibits
significant speedups as well as strong Byzantine-resilience
over previous approaches.

The SOLON framework can be used for any distributed
algorithm which requires the sum of multiple functions,
including gradient descent, SVRG [18], coordinate descent, and
projected or accelerated versions of these algorithms. However,
in this paper, we focus on mini-batch SGD.

II. SOLON: COMMUNICATION EFFICIENT ROBUST
DISTRIBUTED TRAINING VIA ALGORITHMIC REDUNDANCY

We present an overview for SOLON in this section. The
proofs are left to a technical report in progress.

A. Preliminaries
a) Basic notations.: For a matrix A, let Ai,j , Ai,·, and

A·,j denote entries, rows, and columns, respectively. More
generally, AS,T is the submatrix of A with rows indexed by
S and columns indexed by T . The Hadamard, or elementwise,
product A�B of two matrices of the same size has entries
(A � B)i,j = Ai,jBi,j . Let m be the dimension of the
data, n be the size of the training set, and xi ∈ Rm,
i = 1, . . . ,m be the data points. Let `(·; ·) be the loss
function, d be the model dimension, and w ∈ Rd be the

model parameters. Let 1m and 1n×m be the m × 1 vector,
and n × m matrix, of all ones, respectively. Similarly, let
0m,0n×m contain zeros. The empirical risk minimization
(ERM) [29], [30] objective is: minw n

−1∑n
i=1 `(w;xi). The

most common current approach is to use first-order stochastic
optimization to solve this, in particular mini-batch stochastic
gradient descent (SGD). Starting at an initial point w0, we
iterate wk = wk−1 − γ/|Sk|

∑
i∈Sk
∇`w(wk−1;xi), where

Sk ⊆ {1, . . . , n} is a random subset of size B and γ > 0
is the learning rate. We relabel Sk to {1, . . . , B} and denote
∇`(wk−1;xi) by gi.

b) Distributed learning.: We aim to compute g =∑B
i=1 gi in a distributed, adversary-resistant, and communica-

tion efficient manner. We consider a distributed training model
where gradient computations are partitioned across P compute
nodes at each iteration. These operate on a potentially reduced
dimension dc for communication efficiency, and we let the
gradient compression ratio be rc , d/dc. After computing and
summing up their assigned gradients, each node sends their
answer back to the parameter server (PS). This sums them
and updates the model. By applying SOLON, we reduce the
communication complexity for sending gradients to server from
O(Pd) to O(Pdc). The broadcast phase of sending aggregated
gradients from server to compute nodes takes O(log (P)d),
which is not the major overhead. We assume that at most
s compute nodes are unreliable, Byzantine, or adversarial,
and can send to the PS an arbitrary update. We consider
the strongest possible adversaries: with infinite computational
power, knowing the entire data set, the training algorithm, any
defenses present in the system, and able to collaborate.
B. Framework

SOLON is defined by the tuple, or mechanism, (A, E,D),
where A is an allocation matrix specifying how to assign
gradients to nodes, E are encoding functions determining how
each compute node should locally encode its gradients, and
D is a decoding function determining how the PS should
decode the output of the nodes. As an example, in Figure
1(a), A corresponds to the gradient computation assignment
of the compute nodes, E corresponds to the summation of the
gradients by each node, and D refers to the decoding phase at
the PS. We generalize the scheme in Figure 1 to P compute
nodes and B gradients.

Allocation matrix, A. At each iteration of the training
process, we assign the B gradients to the P compute nodes
using a P × B allocation matrix A, where Aj,k is equal to
unity ("1") if node j is assigned to the kth gradient gk, and
zero ("0") otherwise. The support of Aj,·, denoted supp (Aj,·),
is the set of indices of gradients evaluated by the jth node.
For simplicity, we will assume B = P . Let ‖A‖0 be to the L0

norm of a matrix, i.e., the number of nonzero entries. Following
[5], we define the redundancy ratio of an allocation as the
average number of gradients assigned to each compute node, or
equivalently r , ‖A‖0/P . We define the d×P matrix G with
gradients as its columns: G , [g1,g2, · · · ,gP]. The jth node
first picks out its assigned gradients using the allocation matrix
A, computing a d × P gradient matrix Yj , (1dAj,·)�G.

The columns of this matrix are gk if the kth gradient gk is
allocated to the jth compute node, i.e., Aj,k 6= 0, and zero
otherwise.

Encoding Functions, E. The jth compute node is equipped
with an encoding function Ej that maps the d× P matrix Yj

of its assigned gradients to a dc-dimensional vector. The jth
compute node computes and sends zj , Ej(Yj) to the PS. If
the jth node is adversarial, then it instead sends zj + nj to the
PS, where nj is an dc-dimensional Byzantine vector. We let
E = {E1, E2, · · · , EP } be the set of local encoding functions.

Decoding Function, D. The dc × P matrix
Z = ZA,E,G , [z1, z2, · · · , zP] contains all outputs of
the nodes. The dc × P matrix N , [n1,n2, · · · ,nP] contains
all Byzantine vectors, with at most s non-zero columns. Then,
the PS receives a dc ×P matrix R , Z+N, and computes a
d-dimensional vector u , D(R) using a decoding function
D. We require that the algorithm at the PS recovers the
d-dimensional sum of gradients, G1P :

Definition 1. SOLON with (A, E,D) can tolerate s adver-
sarial nodes, if for any N = [n1,n2, · · · ,nP] such that
|{j : nj 6= 0}| ≤ s, we have D(Z+N) = G1P .

If we defend against the Byzantine attack, then the model
update at each iteration is identical to the adversary-free setting.
This implies that convergence guarantees for the adversary-free
case transfer to the adversarial case.

C. Encoding and decoding functions
What are the fundamental limits of the above allocation,

encoding, and decoding schemes, in particular of the redun-
dancy ratio used in allocation and the compression ratio used
in encoding? Perhaps surprisingly, the redundancy ratio does
not depend on the compression ratio. The encoded gradients
at each compute node can be arbitrarily compressed without
affecting the our ability to tolerate Byzantine attacks.

Theorem 1. If there is a mechanism (A, E,D) of gradient
allocation, encoding, and decoding with redundancy ratio r
tolerating s adversarial nodes with a compression ratio rc of
unity, then there is a mechanism (A′, E′, D′) with redundancy
ratio r tolerating s adversarial nodes for any compression
ratio rc > 0.

However (A′, E′, D′) is in a sense pathological and it is
unclear if it can reduce the the number of bits communicated.
Therefore, we seek classes of regular encoder and decoder
functions E,D, to reduce communication cost.

Definition 2. A set of encoding functions E is called regular
if each output element of each function Ej is a function of
linear combinations of columns of the input. Formally, if Ej,v

is the vth element of Ej , then (A, E,D) is regular if there
exists a d × P matrix Uj,v and functions Êj,v, such that
Ej,v(Yj) = Êj,v

(
1T
d (Uj,v �Yj)

)
.

a) Redundancy Bound.: We first study redundancy re-
quirements for exact recovery of the sum of gradients with s
adversaries and compression ratio rc.

Theorem 2. A mechanism (A, E,D) of gradient allocation,
regular encoding, and decoding with compression ratio rc
tolerating s adversarial nodes must have a redundancy ratio
r ≥ 2s+ rc.

Thus, for any regular encoder, each gradient has to be
replicated on average at least 2s+ rc times to defend against
s adversarial nodes with a communication compression ratio
of rc. If a mechanism tolerates s adversarial nodes with a
communication compression ratio of rc, by Theorem 2, each
compute node encodes at least (2s+ rc) d-dimensional vectors
on average. If the encoding has linear time complexity, then
each encoder requires O((2s+ rc)d) operations in the worst
case. If the decoder D has linear time complexity, then it
requires at most O(Pdc) operations in the worst case, as it
needs to use the d-dimensional input from all P compute nodes.
This gives a computational cost of O(Pdc), which is less than
the bound O(Pd) for the repetition code in [5].

D. Optimal Coding Schemes

Can we design a tuple (A, E,D) that has redundancy ratio
r = 2s+ rc? We give a positive answer by presenting a class
of coding approaches that match the above bounds.

a) Linear Block Code: Suppose 2s+rc divides P . Divide
all compute nodes into P

2s+rc
. We assign each node in the same

group to compute the same gradients (“block"). Summing all
computed gradients as a single long vector, each compute node
computes some linear combinations of elements in this vector
and then send them to the PS (”linear“). The PS obtains the
desired gradient summation within each group by solving a
few systems of linear equations.

Formally, the linear block code (ALBC , ELBC , DLBC) is
defined as follows. The assignment matrix ALBC is given by

ALBC =


1r×r 0r×r 0r×r · · · 0r×r 0r×r

0r×r 1r×r 0r×r · · · 0r×r 0r×r

...
...

...
. . .

...
...

0r×r 0r×r 0r×r · · · 0r×r 1r×r

 .

The jth compute node first computes all its allocated gradients
YLBC

j =
(
1dA

LBC
j,·

)
�G. Its encoder function first computes

the summation of all the allocated gradients YLBC
j 1P , and

then computes WjY
LBC
j 1P where Wj is some dc×d matrix.

That is, ELBC
j (YLBC

j) = WjY
LBC
j 1P . It then sends zj =

ERep
j (YRep

j) to the PS.
Next, we present the decoder function, summarized in

Algorithm 1. The decoder function first partitions the received
updates into P

r groups, within each of which all nodes are
required to compute the same gradients (corresponding to the
encoder function). For each group, a block decoder function
ψ(·, ·) recovers the sum of all gradients computed in this group.

We then discuss how Wj is constructed. Given distinct
w1, w2, · · · , wP where wj 6= 0,∀j, Wj is constructed by
Wj , Idc ⊗ [1, wj , w

2
j , · · · , w

rc−1
j]. The adversarial node

index locating function φ(·) works as follows. Given the
dc×r matrix RLBC

j received from the compute nodes, we first
generate a 1× dc random vector f ∼ N (11×dc

, Id), and then
compute rj,c , fRLBC

j . Next, we obtain a r-dimensional

Algorithm 1 Decoder Function DLBC .
Input : Received dc × P matrix RLBC

Output : Desired gradient summation uLBC

1 Let RLBC =
[
RLBC

1 ,RLBC
2 , · · · ,RLBC

P
r

]
,

where each RLBC
j is a dc × r matrix

2 for j = 1 to P
r do

3 V = φ(RLBC
j , j) // Locate the adversarial nodes

U = {1, 2, · · · , r} − V // Non-adversarial nodes
uLBC
j = ψ(RLBC

j , j, U) // Decode each block using the
non-adversarial nodes

4 end
5 Compute and return uLBC =

∑P
r
i=1 u

LBC
i

vector a = [a1, a2, · · · , ar] by solving the linear system[
Ŵj,rc+s−1, −Ŵj,s−1 �

(
rTj,c1

T
s

)]
a = rj,c �

[
Ŵj,s

]
·,s

,

Ŵj ,v ,


1 w(j−1)r+1 w2

(j−1)r+1 · · · wv
(j−1)r+1

1 w(j−1)r+2 w2
(j−1)r+2 · · · wv

(j−1)r+2

...
...

...
...

...
1 wjr w2

jr · · · wv
jr

 .

Finally compute Pj(w) , (
∑rc+s−1

i=0 ai+1w
i)/(ws +∑s−1

i=0 ai+rc+s+1w
i), and return V = {i|Pj(w(r−1)j+i) 6=

[rj,c]i}. The decoding function ψ(·, ·) works as follows. Given
the non-adversarial node index U , it computes and returns

vec

([
RLBC

j

]
·,U

[[
Ŵj,rc−1

]−1
U,·

]T)
. The following lemma

ensures that the Byzantine nodes are correctly found.

Lemma 3. Suppose |{j : ‖nj‖0 6= 0}| ≤ s and r ≥ rc + 2s.
Then φ(RLBC

j , j) = {i : ‖nj(r−1)+i‖0 6= 0} w. probability 1.

The next Lemma demonstrates that within each group the
gradient is correctly recovered.

Lemma 4. If U only contains ≥ r − s non-adversarial nodes,
then with probability 1, uLBC

j =
∑jr

k=(j−1)r+1 yk.

Combing the above two results, we can show that the
linear block code can tolerate any s adversaries and also
achieves redundancy ratio, compression ratio, and has linear-
time encoding and decoding.

Theorem 5. The linear block code (ALBC , ELBC , DLBC)
tolerates any s adversaries with probability 1 and achieves
the redundancy ratio bound. For d � P , its encoding and
decoding achieve linear-time computational complexity.

III. EXPERIMENTS

We present an empirical study on SOLON compared with
several existing methods including DRACO, BULYAN, and
SIGNUM. Across diverse ML models trained on real world
datasets, we have found 1) that SOLON results in significant
speedups over existing methods, including 11× faster than
BULYAN and 80% faster than DRACO while reaching the
same accuracy, and 2) that SOLON consistently leads to

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

Solon Draco Bulyan Signum Vanilla, noadv

0 5 10 15 20 25 30
Number of Iterations (x100)

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)

(a) Accuracy vs steps, rev-grad

0 5 10 15 20 25 30
Number of Iterations (x100)

50

60

70

80

90

100

(b) Accuracy vs steps, constant

0 5 10 15 20 25 30
Number of Iterations (x100)

30
40
50
60
70
80
90

100

Te
st

 A
cc

ur
ac

y
(%

)

(c) Accuracy vs steps, ALIE

0 5 10 15 20 25 30 35
Wall-clock Time (Hour)

65
70
75
80
85
90
95

(d) Accuracy vs time, rev-grad

0 5 10 15 20 25 30
Wall-clock Time (Hour)

55
60
65
70
75
80
85
90
95

Te
st

 A
cc

ur
ac

y
(%

)

(e) Accuracy vs time, constant

0 5 10 15 20 25
Wall-clock Time (Hour)

35
45
55
65
75
85
95

(f) Accuracy vs time, ALIE
Figure 2. End to end convergence performance of SOLON and other baselines
on ResNet-18 and CIFAR-10. (a)-(c): Comparison of test accuracy vs. the
number of iterations between SOLON rc = 10 and other methods under
different attacks. (d)-(f): Test accuracy vs. running time of SOLON and other
methods. Vanilla SGD simply averages gradients received on PS and is tested
without adversary. Accuracy may fluctuate occasionally due to randomness
and lr adjustments.

successful convergence for all Byzantine attacks considered,
while previous approaches may fail on different attacks. We
leave more detailed experiments in an on-going technical report.

a) Experimental setup: We implement SOLON in Py-
Torch [24] with MPI [7] as the communication library. The
experiments were conducted on a cluster of 50 real c220g5
machines from Cloudlab [13] with 100 virtual machines and a
1 Gbps network speed. We trained three large scale models,
namely, ResNet-18 [15] on CIFAR-10 [19], VGG13-BN [27] on
SVHN [23], and a two-layer stacked LSTM [16] on Wikitext-
2 [22], respectively. For comparison with SOLON, we also
evaluate two robust aggregator-based approches, BULYAN,
SIGNUM, and DRACO. SOLON splits the virtual machines
evenly into 5 groups, each with 20 redundant machines.

b) Attacks: We use three different attacks: reverse gradi-
ent, constant, and ALIE. In the reverse gradient attack (rev-
grad), Byzantine nodes always send κ times the true gradient
to the PS. In the constant attack, Byzantine nodes always send
a constant multiple c of the all-ones vector. In the experiments
shown, κ = −100 and c = −100. In ALIE, Byzantine nodes
use local information to estimate the mean and variance of the
gradients computed at the other nodes, and then manipulate

Comp Comm Decode Total0
20
40
60
80

100
120
140

Ti
m

e
Pe

r
It

er
 (

se
c) Solon

Draco
Bulyan
Signum
Vanilla

(a) ResNet18, Cifar10

Comp Comm Decode Total0
20
40
60
80

100
120
140

(b) VGG13-BN, SVHN

Comp Comm Decode Total0
10
20
30
40
50
60
70
80

Ti
m

e
Pe

r
It

er
 (

se
c)

(c) LSTM, Wikitext-2

vs
Draco
rev-g

vs
Bulyan
rev-g

vs
Signum
rev-g

vs
Signum
const

vs
Signum

ALIE

vs
Bulyan
ALIE

90

80

70

60Te
st

 A
cc

ur
ac

y
(%

) 1.8x 11.0x ∞ ∞ ∞ ∞

1.5x 10.0x 1.9x ∞ ∞ ∞

1.4x 10.0x 1.8x ∞ 3.0x ∞

1.3x 7.0x 1.1x 4.8x 1.8x ∞

(d) Speedup of SOLON
Figure 3. (a)-(c) Time breakdown per iteration of SOLON rc = 10 and all
baseline methods over three models+datasets under rev-grad. The types of
attack will not affect any of the times. Notice that even if SIGNUM is the
fastest in time per iteration among those methods, and even faster than vanilla
SGD, its accuracy is sacrificed and thus SOLON still has the best convergence
performance. (d) The speed up (×) of SOLON, rc = 10 vs other baselines on
converging to certain test accuracy level on ResNet-18+Cifar10 under selected
attacks. Values are approximation. ∞ means the method does not converge.

the gradient as µ̂ + z · σ̂ where µ̂ and σ̂ are the estimated
mean and standard deviation by Byzantine nodes and z is an
adjustable hyper-parameter. In experiments, we set z = 1. At
each iteration, we randomly select s = 5 nodes as adversaries.

c) End to end performance: The end to end performance
is shown in Figure 2. We first note that previous approaches
may result in significant accuracy loss under certain attacks.
For example, SIGNUM’s accuracy is 30% worse than the
Byzantine-free vanilla SGD under constant attack (Figure 2(b)),
and ALIE attack leads a 50% accuracy drops for BULYAN
(Figure 2(b)). Nevertheless, across different attacks, SOLON
consistently converges and matches the accuracy performance
of the vanilla SGD in a Byzantine-free environment.

Furthermore, SOLON provides significant runtime speedups
over existing methods. As shown in Figure 2(d), SOLON
converges faster than all the other baselines. Its runtime
performance even outperforms the vanilla SGD in a Byzantine-
free environment. This is primarily due to the communication
compression technique used in SOLON. Figure 3(d) gives a
quantitative result of the speedups achieved by SOLON. To
achieve a 90% test accuracy, SOLON obtains a speedup of
1.8× over DRACO and 11× over BULYAN under the reverse
gradient attack, while SIGNUM cannot reach 90% accuracy.

d) Per iteration cost: Next we dive into the per iteration
cost of each approach, as shown in Figure 3(a)-(c). We note
that BULYAN requires a significantly higher decoding time
than all the other methods. This is probably because BULYAN
deploys a computational expensive robust aggregator. Note that
SOLON reduces the communication cost by slightly increasing
the computation and decoding complexity compared to DRACO.
Nevertheless, across all datasets and models considered in our

experiments, SOLON attains the fastest per iteration runtime.
This is because SOLON largely reduces the communication
cost, which is the bottleneck in a large cluster, and the extra
computation and decoding cost is relatively small.

IV. CONCLUSION

In this paper, we propose SOLON, a distributed training
framework that simultaneously resists Byzantine attack and
reduces communication overhead via algorithmic redundancy.
We show that there is a fundamental trade-off between
Byzantine-resilience, communication cost, and computational
cost. Extensive experiments show that SOLON provides signifi-
cant speedups over existing methods, and consistently leads to
successful convergence under different attacks.

REFERENCES

[1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,” in
Advances in Neural Information Processing Systems, 2017, pp. 1707–
1718.

[2] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circum-
venting defenses for distributed learning,” in Advances in Neural Infor-
mation Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, 2019, pp. 8635–
8645.

[3] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signSGD
with majority vote is communication efficient and fault tolerant,” in ICLR,
2019.

[4] P. Blanchard, R. Guerraoui, J. Stainer et al., “Machine learning with
adversaries: Byzantine tolerant gradient descent,” in Advances in Neural
Information Processing Systems, 2017, pp. 119–129.

[5] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “Draco: Byzantine-
resilient distributed training via redundant gradients,” in International
Conference on Machine Learning, 2018, pp. 903–912.

[6] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 2,
pp. 1–25, 2017.

[7] L. Dalcín, R. Paz, and M. Storti, “Mpi for python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[8] G. Damaskinos, E. El-Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault,
“AGGREGATHOR: byzantine machine learning via robust gradient
aggregation,” in MLSys, A. Talwalkar, V. Smith, and M. Zaharia, Eds.,
2019.

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”
in Advances in Neural Information Processing Systems, 2012, pp. 1223–
1231.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR. Ieee, 2009, pp.
248–255.

[11] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
J. Burstein, C. Doran, and T. Solorio, Eds., 2019.

[12] E. Dobriban and Y. Sheng, “Wonder: Weighted one-shot distributed ridge
regression in high dimensions.” Journal of Machine Learning Research,
vol. 21, no. 66, pp. 1–52, 2020.

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart,
L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra,
“The design and operation of CloudLab,” in Proceedings of the USENIX
Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.

[14] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed
learning in byzantium,” in International Conference on Machine Learning,
2018, pp. 3521–3530.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[16] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag
problems,” in Proceedings of the 9th International Conference on Neural
Information Processing Systems, ser. Advances in Neural Information
Processing Systems. MIT Press, 1996, p. 473–479.

[17] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified architecture
for accelerating distributed DNN training in heterogeneous gpu/cpu
clusters,” in OSDI, 2020, pp. 463–479.

[18] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, 2013, pp. 315–323.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[20] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning
with the parameter server,” in OSDI, 2014, pp. 583–598.

[21] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,
“Parameter server for distributed machine learning,” in Big Learning
NIPS Workshop, vol. 6, 2013, p. 2.

[22] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture
models,” arXiv preprint arXiv:1609.07843, 2016.

[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” NIPS
Workshop on Deep Learning and Unsupervised Feature Learning, 01
2011.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library.” in Advances
in Neural Information Processing Systems, 2019.

[25] B. Recht. (2010) Prony’s method. CS838 Topics in optimization:
Convex geometry in high-dimensional data analysis, Lecture 6. [Online].
Available: http://pages.cs.wisc.edu/~brecht/cs838docs/Lecture06.pdf

[26] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015.

[28] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[29] V. Vapnik, “Principles of risk minimization for learning theory,” in
Advances in Neural Information Processing Systems, J. Moody, S. Hanson,
and R. P. Lippmann, Eds., vol. 4. Morgan-Kaufmann, 1992.

[30] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[31] H. Wang, S. Sievert, S. Liu, Z. B. Charles, D. S. Papailiopoulos,
and S. Wright, “ATOMO: communication-efficient learning via atomic
sparsification,” in Advances in Neural Information Processing, S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., 2018, pp. 9872–9883.

[32] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
arXiv preprint arXiv:1705.07878, 2017.

[33] C. Xie, O. Koyejo, and I. Gupta, “Fall of empires: Breaking byzantine-
tolerant sgd by inner product manipulation,” in Uncertainty in Artificial
Intelligence. PMLR, 2020, pp. 261–270.

[34] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in Internation Conference on Machine Learning, vol. 80. PMLR,
10–15 Jul 2018, pp. 5610–5619.

[35] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed
learning: Towards optimal statistical rates,” in Internation Conference
on Machine Learning. PMLR, 2018, pp. 5650–5659.

http://pages.cs.wisc.edu/~brecht/cs838docs/Lecture06.pdf

	Introduction
	Solon: Communication Efficient Robust Distributed Training via Algorithmic Redundancy
	Preliminaries
	Framework
	Encoding and decoding functions
	Optimal Coding Schemes

	Experiments
	Conclusion
	References

