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Abstract
In this paper we study leveraging confidence in-
formation induced by adversarial training to rein-
force adversarial robustness of a given adversar-
ially trained model. A natural measure of confi-
dence is ‖F (x)‖∞ (i.e. how confident F is about
its prediction?). We start by analyzing an adver-
sarial training formulation proposed by Madry et
al.. We demonstrate that, under a variety of in-
stantiations, an only somewhat good solution to
their objective induces confidence to be a dis-
criminator, which can distinguish between right
and wrong model predictions in a neighborhood
of a point sampled from the underlying distribu-
tion. Based on this, we propose Highly Confident
Near Neighbor (HCNN), a framework that com-
bines confidence information and nearest neigh-
bor search, to reinforce adversarial robustness of
a base model. We give algorithms in this frame-
work and perform a detailed empirical study. We
report encouraging experimental results that sup-
port our analysis, and also discuss problems we
observed with existing adversarial training.

1. Introduction
In the adversarial-perturbation problem for neural net-
works, an adversary starts with a neural network model F
and a point x that F classifies correctly (we assume that
F ends with a softmax layer, which is common in the lit-
erature), and crafts a small perturbation to produce another
point x′ that F classifies incorrectly. (Szegedy et al., 2013)
first noticed the vulnerability of existing neural networks
to adversarial perturbations, which is somewhat surprising
given their great generalization capability. Since then, a
line of research (e.g., (Goodfellow et al., 2014; Papernot
et al., 2016b; Miyato et al., 2017; Madry et al., 2017)) has
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been devoted to hardening neural networks against adver-
sarial perturbation. While modest progress has been made,
until now there is still a large gap in successfully defending
against more advanced attacks, such as the attack by (Car-
lini & Wagner, 2017a).

In this paper we study leveraging confidence information
induced by adversarial training, to reinforce adversarial ro-
bustness of a given adversarially trained model. A natu-
ral measure of confidence is ‖F (x)‖∞ (i.e. how confi-
dent F is about its prediction?). Our motivation comes
from a thought experiment based on the manifold assump-
tion (Zhu & Goldberg, 2009) made in unsupervised and
semi-supervised learning, which states that natural data
points lie on (or near to) separate low dimensional man-
ifolds for different classes. If one believes that a good
deep neural network model can approximate well the natu-
ral manifolds, then ideally it should have the property that it
can confidently distinguish points from natural manifolds,
while not claiming confidence for points that are far away
from the natural manifolds. Since natural manifolds are
assumed to be separate, it follows that for a good model,
confident model predictions for different classes must be
separate from each other.

Taking this perspective, we formalize a probabilistic prop-
erty on the separation of confident model predictions for
different classes, and use it to examine existing adversar-
ial training formulations. Somewhat surprisingly, we find
that a natural min-max formulation proposed by (Madry
et al., 2017), under a variety of instantiations, encourages
training a model that satisfies our property well. At a high
level, the reason for this is that a good solution to the inner
maximization of the min-max formulation encourages that
there is no confident wrong prediction in a neighborhood of
a point sampled from the underlying distribution.

Our key observation is that, even if a model is only a some-
what good solution under Madry et al.’s adversarial train-
ing formulation, it induces confidence to be a discriminator
which can distinguish between right and wrong model pre-
dictions. That is, a model prediction of higher confidence
is more likely to be correct. As a result, even though a
somewhat good adversarially trained model may still have
many wrong predictions with low confidence, one can use
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confidence to further reinforce its adversarial robustness.
For example, one can now try to protect the model, from
making wrong predictions, by rejecting a point if model
confidence at the point is below certain threshold.

We take a step further to study correcting model predictions
at adversarial points, leveraging that model predictions
there tend to have lower confidence. We propose Highly
Confident Near Neighbor (HCNN), a framework which com-
bines confidence information and nearest neighbor search,
to embed a possibly low-confidence point back to high-
confidence regions. Specifically, let ‖ · ‖ be a norm, and
suppose that we want to defend against ‖ · ‖-attacks with
radius η. Let F be a model with good separation prop-
erty so that confidence can distinguish right and wrong
model predictions in a δ-neighborhood of a point sam-
pled from the underlying distribution. Let | · | be a pos-
sibly different norm, and ξ > 0, λ ≥ 0 be two real num-
bers. The ξ-Highly Confident Near Neighbor, or simply
HCNNξ, computes arg maxz∈N(x,ξ)(‖F (z)‖∞−λ| z−x |),
where N(x, ξ) is the ξ-neighborhood around x w.r.t. ‖ · ‖.
That is, in a ξ-ball centered at x, we encourage finding a
point which simultaneously has a high-confidence predic-
tion, and is near to x. Therefore, one can hope to correct
adversarial points for η ≤ δ − ξ. It turns out in our ex-
periments that there are nontrivial settings of δ, η, ξ under
which we demonstrate a significant improvement of model
robustness over F .

We perform a detailed empirical study over CIFAR10 for
`∞ attacks. We reuse the robust ResNet model trained by
Madry et al. as base model, and use HCNNξ. We modify
state-of-the-art `∞ attacks, such as the CW attack (Car-
lini & Wagner, 2017a), and the PGD attack (Madry et al.,
2017), to exploit confidence information in order to break
our method by generating high-confidence attacks. We first
empirically validate that Madry et al.’s model is better, in
view of our probabilistic separation property, than models
trained without a robustness objective. We then evaluate
using confidence to reject adversarial examples, and finally
end-to-end defense results. Our results are both encourag-
ing and discouraging: for small radius, we find that con-
fidence is indeed a good discriminator to distinguish right
and wrong predictions, and it does improve adversarial ro-
bustness. For large radius that approaches .03, however,
we find that Madry et al.’s base model loses control there.
We further argue that modifications are needed for Madry
et al.’s adversarial training in order to defend against more
effectively `∞-attacks of large radius.

In summary this paper makes the following contributions:

• We propose a probabilistic property of separation be-
tween confident predictions for different classes. We
prove that a natural min-max adversarial training en-
courages a model that satisfies this property well. As

a result, confidence can be used as a discriminator to
distinguish between right and wrong predictions, even
when a model is only a somewhat good solution to the
training objective.

• We propose using confidence induced by adversarial
training to further reinforce adversarial robustness of
a given adversarially trained model. Specifically, we
propose rejecting adversarial points using confidence,
and further correcting adversarial points by combining
confidence with nearest neighbor search.

• We perform a detailed empirical study to validate our
proposal. We report encouraging results that support
our analysis, and discuss problems we observed with
existing adversarial training.

The rest of the paper is organized as follows: We start with
some preliminaries in Section 2. Then Section 3 proposes
the probabilistic separation property and we use it to an-
alyze Madry et al.’s adversarial training formulation. We
then present embedding objectives and algorithms for han-
dling low-confidence points, and end-to-end instantiations,
in Section 4. Section 5 performs a detailed empirical study
of our method. We discuss important prior work in Sec-
tion 6 and conclude in Section 7.

2. Preliminaries
As in existing work, such as (Carlini & Wagner, 2017a; Pa-
pernot et al., 2016b), we define F to be a neural network
after the softmax layer. With this notation, the final clas-
sification is then CF (x) = arg maxi F (x)i where F (x)i
gives the confidence of the network in classifying x for
class i. We use Z(x) to denote part of F except the soft-
max layer. That is, Z(x) computes the logits to be fed into
the softmax function. Let C denote the class of all labels.
A network is typically parameterized by parameters θ, and
in this case we denote by Fθ to indicate that F is param-
eterized by θ. Finally, let p ∈ [0, 1] be a parameter, and
l ∈ C. A point x is p-confident for label l if F (x)l ≥ p. We
consider the following adversarial model which is implicit
in several previous work (e.g. (Madry et al., 2017)):

Definition 1 (Adversarial Model). Let D be a data gen-
erating distribution over Rd, F be a model, and S ⊆ Rd
be a set of perturbations. We consider the following game
between an adversary and a defender:
Adversary: the adversary draws x ∼ D, produces x′ =
x+∆ for some ∆ ∈ S, and sends x′ to the defender.
Defender: the defender outputs a label l ∈ C for x′.
The defense succeeds if CF (x) = CF (x′).

An important point regarding this adversarial model is that
it only considers points on D or nearby (as specified by
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the allowable perturbations S), instead of the entire do-
main. While seemingly one should consider every point in
the space, this definition better reflects the intuition behind
adversarial perturbation problem: that is, for “natural im-
ages,” the classification should be consistent with respect
to a set of “small perturbations.”

3. Probabilistic Separation Property and
Madry et al.’s Formulation

This section develops the following:

• In Section 3.1, we propose a goodness property of
models which states that confident regions of a good
model should be well separated. We further formalize
this as a probabilistic separation property.

• In Section 3.2, we examine existing robust train-
ing formulations and demonstrate that a natural min-
max formulation of (Madry et al., 2017) encourages
very good separation of p-confident points of differ-
ent classes for large p, but has a weak control of low-
confidence wrong predictions due to estimation error.

3.1. Probabilistic Separation Property

The manifold assumption in unsupervised and semi-
supervised learning states that natural data points lie on
(or near to) separate low dimensional manifolds for differ-
ent classes. Under this assumption what would an ideal
model look like? Clearly, we would expect that an ideal
model can confidently classify points from the manifolds,
while not claiming confidence for points that are far away
from those manifold. Therefore, since by assumption low
dimensional manifolds are separate from each other, we
would expect that confident correct predictions of different
classes are separate from each other. Therefore, we propose
the following goodness property

Confident predictions of different classes should be well
separated.

We formalize this as the following property:

Definition 2 ((p, q, δ)-separation). Let D be a data gen-
erating distribution, p, q ∈ [0, 1], δ ≥ 0, and d(·, ·) be
a distance metric. Let B be the event {∃y′ 6= y,x′ ∈
N(x, δ), Fθ(x

′)y′ ≥ p}. F is said to have (p, q, δ)-
separation if Pr(x,y)∼D

[
B
]
≤ q, where N(x, δ) =

{x′ | d(x,x′) ≤ δ}.

This definition says that for a point (x, y) sampled from
the data generating distribution, in its neighborhood there
should not be confident wrong predictions (though wrong
model predictions with low confidence may still exist).

Thus, if a model satisfies this definition well, then confi-
dent predictions of different classes must be well separated.
Finally, this definition allows certain points to be “bad.”

3.2. An Analysis of the Min-Max Formulation
of (Madry et al., 2017)

This section gives an analysis of the min-max formulation
proposed by (Madry et al., 2017). Essentially, our analysis
shows that a variety of its instantiations encourage training
a model that satisfies Definition 2. More specifically, we
prove two things: (1) the formulation encourages training
a model that satisfies Definition 2, and (2) complementing
this, we show that the formulation may have a weak control
of points with low-confidence but wrong predictions, due to
estimation error with finite samples. To start with, Madry
et al. proposes the following formulation:

minimize ρ(θ),

where ρ(θ) = E
(x,y)∼D

[
max
∆∈S

L(θ,x+∆, y)

]
,

(1)

where D is the data generating distribution, S is set of al-
lowed perturbations (e.g., S = {∆ | ‖∆‖∞ ≤ δ}), and
L(θ,x, y) is the loss of θ on (x, y). For the rest of the dis-
cussion, we denote κ(θ,x, y) = max∆∈S L(θ,x+∆, y),

Analyzing a Family of Loss Functions. Let us consider
the following family of loss functions,

L =
{
L(θ,x, y) where L(θ,x, y) is monotonically

decreasing in Fθ(x)y.
}

In other words, as we have higher confidence about the
correct prediction, we have smaller loss. For L ∈ L,
there is a monotonically decreasing loss-lower-bound func-
tion τL : [0, 1] 7→ R≥0, so that if Fθ(x)y ≤ q, then
L(θ,x, y) ≥ τL(q).

Example 1 (Cross Entropy Loss). Let L(θ,x, y) =
H(1y, Fθ(x)) = − logFθ(x)y , be the cross entropy be-
tween 1y and Fθ(x), where Fθ is the model instantiated
with parameters θ, and 1y is the indicator vector for label
y. Then we can define τL as τL(α) = − logα.

With these notations we have the following proposition,

Proposition 1. Let L ∈ L, τL be a loss-lower-
bound function, and B be the event {(∃y′ 6= y,x′ ∈
x+S) Fθ(x

′)y′ ≥ p}. If ρ(θ) ≤ ε, then Pr(x,y)∼D
[
B
]
≤

ε
τL(1−p) . That is, the probability of an x′ ∈ x+S that is
p-confident on a wrong label decreases as p→ 1.

This immediately generates the following corollary,

Corollary 1. Let S be a region defined as {∆ | d(∆,0) ≤
δ}. If ρ(θ) ≤ ε, then the model Fθ is (p, ε

τL(1−p) , δ)-
separated.
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This indicates that even if a model is only a somewhat good
solution to (1), meaning ρ(θ) ≤ ε for only a somewhat
small ε, then p-confident points will be well separated (in
the sense of Definition 2) as soon as p increases.

The above proposition considers a situation where we have
a confident but wrong point (with confidence p). What
about points that have wrong but low-confidence predic-
tions? For example, the confidence on the wrong label is
only 1

2 + ν for some small ν? Note that by setting p = 1/2
we derive immediately a bound ε/τL(1/2) (which can be
much weaker than ε/τL(1 − p) for large p). We note that
this bound is tight without further assumptions:

Proposition 2. Let Fθ be a neural network parameter-
ized by θ, and CFθ be the corresponding classification
network. If ρ(θ) ≤ ε, then Pr(x,y)∼D

[
(∃y′ 6= y,x′ ∈

x+S), CFθ (x
′) = y′

]
≤ ε

τL(1/2) . The bound is tight.

Instantiations. The above two propositions can be special-
ized to many different forms of L. Basically, any loss func-
tion that encourages high confidence on the correct label,
when plugged into (1), encourages that there is no wrong
prediction with high confidence. We list a few of them:

• Cross Entropy Loss. If we use L(θ,x, y) =
− logF (x)y , we immediately get separation guaran-
tee − ρ(θ)

log(1−p) in Proposition 1.

• Squared Loss. It is also natural to consider
L(θ,x, y) = (1 − Fθ(x)y)2. This then gives sep-
aration guarantee ρ(θ)/p2. Note that this guarantee
is weaker than the one above with cross entropy: As
p → 1, the probability of bad events happening only
converges to ρ(θ), instead of 0.

• Entropy Regularization. In (Miyato et al., 2017)
the authors proposed to use the entropy of F (x),
H(F (x)), as a regularizer. We note that such regular-
ization is compatible with our argument here. Essen-
tially as one increases F (x)y , the entropy decreases.

• Loss functions in Carlini-Wagner Attacks. It is also
not hard to check that any objective function used for
targeted attacks in (Carlini & Wagner, 2017a) (see
Objective Function on pp. 6 of their paper) can be
adapted as loss function L in the min-max paradigm
to draw similar conclusions.

Contrasting Proposition 1 and 2, we note the following:

• We note that in reality we only have a finite-sample
approximation for (1). Therefore, due to estimation
error of solving the objective, even though one can
hope for a good separation between p-confident points
from different classes for large p (by Proposition 1),

there may still be many low-confidence wrong predic-
tions (by Proposition 2).

• Our analysis indicates that even if the model is only
a somewhat good solution to Madry et al.’s formula-
tion, confidence gives additional information, and is
provably a discriminator which can distinguish be-
tween right and wrong predictions in a neighborhood
of a point. Therefore in this situation, one can lever-
age confidence to reinforce robustness of the model.
For example, we can now try to apply confidence to
protect a model with good separation property, from
making wrong predictions, by rejecting adversarial
points. Specifically, with an appropriately chosen
threshold p0, we can modify the model so that we out-
put ⊥ if ‖F (x)‖∞ < p0, otherwise we output CF (x).
In this way, we hope that we can correctly predict
on natural points while rejecting adversarial points.
In the next section, we investigate further combining
confidence and search to correct adversarial examples.

4. From Confidence to Defenses
Our analysis from the previous section shows that there can
be good models with well-separated confident regions,yet
there may be a weak control of points that have wrong pre-
dictions but low model confidence. However, since now
right and wrong predictions are distinguishable by confi-
dence, one can try to correct an adversarial point by embed
it back to high-confidence regions. In the following we es-
tablish embedding and end-to-end instantiations.

Embedding Objectives. We propose a framework, Highly
Confident Near Neighbor (HCNN), for embedding:

Definition 3 (Highly Confident Near Neighbor). Let F
be a model, ‖ · ‖, | · | be two possibly different norms, and
ξ > 0, λ ≥ 0 be two real numbers. The ξ-Highly Confident
Near Neighbor objective (or simply HCNNξ) computes:

HCNNξ(F,x) ≡ arg max
z∈N(x,ξ)

(‖F (z)‖∞ − λ| z−x |). (2)

where N(x, ξ) is the ξ-ball around x with respect to ‖ · ‖.

In short, in a ξ-ball centered at x, this objective tries to en-
courage finding a point which simultaneously has a high-
confidence prediction, and is near to x. We have two im-
mediate variants. First, by setting λ = 0, we have ξ-Most
Confident Neighbor (MCNξ):

Definition 4 (Most Confident Neighbor). Let F be a
model, ‖ · ‖ be a norm, and ξ > 0 be a real number. The ξ-
Most Confident Neighbor objective (or simply MCNξ) com-
putes:

MCNξ(F,x) ≡ arg max
z∈N(x,ξ)

‖F (z)‖∞. (3)
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where N(x, ξ) is the ξ-ball around x with respect to ‖ · ‖.

Second, by putting a threshold on ‖F (z)‖∞ and minimiz-
ing | z−x | alone, we have p-Nearest Confident Neighbor:

Definition 5 (Nearest Confident Neighbor). Let F be a
model, ‖ · ‖, | · | be two possibly different norms, and p ∈
(0, 1) be a real number. The p-Nearest Confident Neighbor
objective (or simply NCNp) computes:

NCNp(F,x) ≡ arg min
z∈N(x,ξ)

| z−x |,

subject to ‖F (z)‖∞ ≥ p.
(4)

where N(x, ξ) is the ξ-ball around x with respect to ‖ · ‖.

Algorithm 1 Solving HCNNξ by solving for each label.
Input: x a feature vector, ξ > 0 a real parameter, λ ≥ 0

a real parameter, a base model F , any gradient-based
optimization algorithm O to solve the constrained op-
timization problem defined in (5).

1: function OracleHCNN(x, ξ, F )
2: for l ∈ C do
3: z(l) ←O(x, F, l)

4: return z(l∗) where

l∗ = arg max
l∈C

(
F (z(l))l − λ| z(l)−x |

)
.

Algorithms. For the rest of the paper we focus on solving
HCNNξ (and hence MCNξ as well). To start with, we note that
the optimization for solving HCNNξ is nothing but for each
label l ∈ C we try to find

z(l) = arg max
z∈N(x,ξ)

(F (z)l − λ| z−x |) (5)

and then compute z(l∗) for l∗ = arg maxl F (z(l))l −
λ| z(l)−x |. (5) can be solved using any preferred gradient-
based optimization (e.g., projected gradient descent (No-
cedal & Wright, 2006)). This gives Algorithm 1.

Attacks as Defenses. Note that solving (5) is similar to a
targeted adversarial attack which modifies x to increase
the confidence on target label t, while maintaining small
distance to x. Thus an adversarial attack, such as those
proposed in (Carlini & Wagner, 2017a), can be used as O.

Entropy Approximations. Algorithm 1 may be inefficient.
To mitigate this issue, one can replace ‖F (·)‖∞ by entropy
functions, which are then differentiable and so we can di-
rectly apply gradient descent. We have the following:

Shannon entropy approximation. Approximate ‖F (z)‖∞
by H(F (z)) = −

∑
l∈C F (z)l logF (z)l.

α-Rényi entropy approximation. For α ≥ 0, α 6= 1, ap-
proximate ‖F (z)‖∞ by Hα(F (z)) = α

1−α log(‖F (z)‖α),
where ‖F (z)‖α is the α-norm of F (z).

Essentially, these approximations share some of the most
important optima as ‖F (z)‖∞: for example if the proba-
bility vector F (z) concentrates on one coordinate.

Putting Things Together. Let F be a base model, Hξ be
an embedding algorithm (e.g. OracleHCNN). Then the
end-to-end model is Γ(x) = F (Hξ(x, F )), for some ap-
propriately chosen ξ. We next show how to set parameters
(ξ, δ, etc.). Consider an adversary who wants to perform
an ‖ · ‖-attack with parameter η. Suppose that we decide
to use HCNN with parameter ξ. Note that the guarantee that
confidence being a discriminator (Proposition 1) holds in a
neighborhood of radius δ. Thus to have the guarantee hold
in the search of radius ξ, we must have δ ≥ ξ + η.

Suppose that F satisfies (p, q, δ)-separation. We say
that (x, y) ∼ D is (p, δ)-good if {(∀y′ 6= y,x′ ∈
N(x, δ)), F (x′)y′ < p}. We note that ΓMCN

ξ (·) ≡
F (MCNξ(·)) will output a correct prediction at a point z ∈
N(x, δ), if z satisfies the following definition,

Definition 6 ((p, MCNξ)-goodness). A point z is said to
be (p, MCNξ)-good if there is a point in N(z, ξ) that is p-
confident for the correct label.

We can further show that ΓMCN
ξ improves separation:

Proposition 3 (MCNξ improves separation property).
Suppose that F satisfies (p, q, δ)-separation. Let η, ξ sat-
isfy that η+ ξ ≤ δ. If for every (p, δ)-good point (x, y), we
have that every point z ∈ N(x, η) is (p, MCNξ)-good, then
ΓMCN
ξ satisfies (1− p, q, η) separation.

That is, ΓMCN
ξ satisfies a much stronger separation property,

though in a smaller η-neighborhood, in the sense that there
is no point in the η-neighborhood at which ΓMCN

ξ will assign
confidence ≥ 1− p to a wrong label.

Finally, as it turns out in our experiments, there are non-
trivial settings of δ, η, ξ under which there is a significant
improvement of model robustness over the base model.

5. Empirical Study
In this section we perform a detailed empirical study of
our method. We call a model “natural” if it is trained in
the usual way without considering adversarial robustness,
and a model “adversarially trained” if it is trained using the
paradigm specified in (1). A key objective of the empirical
study is to compare the behavior of confidence of adver-
sarially trained models and that of natural models, as our
analysis predicts that confidence will act as a discrimina-
tor between right and wrong predictions for adversarially
trained models. We ask the following questions:
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1. Does an adversarially trained model satisfy well our
probabilistic separation property (Definition 2)?

2. Is confidence information effective to help rejecting
adversarial examples (e.g., by returning ⊥), while re-
taining generalization on points sampled from the un-
derlying distribution?

3. Is HCNNξ effective in defending against adversarial
perturbations, while retaining generalization capabil-
ity of the adversarially trained base model?

Overall Setup. We study the above questions using `∞
attacks over CIFAR10 (Krizhevsky, 2009). We denote by
η the radius parameter of `∞ attacks. We reuse the ResNet
model trained by (Madry et al., 2017) as a representative of
an adversarially trained model. This model is trained with
respect to an `∞-adversary with parameter δ = 8/256 ≈
0.030. We denote by ξ the radius parameter of HCNN.

Attacks and Gradient Masking. We note that HCNN may
induce an effect of gradient masking (Athalye et al., 2018),
and thus may be susceptible to attacks that try to intention-
ally bypass gradient masking. Taking this into account, we
modified existing attacks, including the CW attack in (Car-
lini & Wagner, 2017a), and the PGD attack (Madry et al.,
2017), to exploit confidence information. Basically, these
modified attacks find adversarial points with high confi-
dence, in order to break our defense method which relies
on confidence as a discriminator.

Summary of Findings. Our main findings are as follows:
(1) The behavior of confidence of adversarially trained
models, as predicted by our analysis, is significantly bet-
ter than natural models in distinguishing right and wrong
predictions. In particular, within small radius, confidence
information of Madry et al.’s model gives a good discrimi-
nator to improve adversarial robustness. (2) Unfortunately,
confidence of the adversarially trained mode by (Madry
et al., 2017) loses control as one approaches the .03 bound-
ary. We give further reasoning and argue that modifications
to Madry et al.’s formulation seem necessary in order to de-
fend against .03-`∞ attacks effectively.

Adv. trained model Natural model
# adv. points 26 277

Table 1. Results for testing separation property. We randomly
sample 300 points. For each column, we report number of sam-
ples that we can find attacks of confidence at least 0.9.

Validating the Probabilistic Separation Property. To an-
swer our first empirical question, we statistically estimate
Pr(x,y)∼D

[
(∃y′ 6= y, x′ ∈ N(x, δ))F (x′)y′ ≥ p

]
, from

Definition 2 and Proposition 1. We compare the adversar-
ially trained model in (Madry et al., 2017) and its natu-

ral variant. Let B denote the bad event (∃y′ 6= y, x′ ∈
N(x, δ))F (x′)y′ ≥ p. We randomly sample a batch of data
points from the test set, and compute frequency that B hap-
pens for each batch. To do so, we generate p-confident at-
tacks which are adversarial examples that have model con-
fidence at least p. We use a modified `∞-CW attack (Car-
lini & Wagner, 2017a) to search as long as possible to find
p-confident adversarial examples that lie within the norm
bound η = δ = 0.030. Table 1 summarizes the results.

With these statistics we can thus estimate (p, q, δ)-
separation (Definition 2) of the models in comparison. We
have (details are deferred to Appendix D).

Proposition 4 (Separation from statistics). Let B be the
event

{
(∃y′ 6= y,x′ ∈ N(x, δ))F (x′)y′ ≥ .9

}
. The fol-

lowing two hold:

• With probability at least .9 the robust model
in (Madry et al., 2017) satisfies Pr(x,y)∼D

[
B
]
≤

14
75 = 0.18667 . . . That is, the robust model has
( 9

10 ,
14
75 ,

8
255 )-separation.

• With probability at least .9 the natural model satisfies
Pr(x,y)∼D

[
B
]
≥ 247

300 = 0.82333 . . . That is, the nat-
ural model does not have ( 9

10 , q,
8

255 )-separation for
q < 247

300 .

Rejecting Adversarial Examples. To answer our second
empirical question, we perform the following experiment.
We sample 1000 points from the test set, where the base
model is correct at, as a set of natural points N . For
each point x ∈ N , we generate an adversarial example
x? whose model confidence is maximal. To do so, we use
a strengthened version of the PGD attack used in (Madry
et al., 2017) (with `∞ radius η, 10 random starts, and 100
iterations)1 to first generate, for each wrong label, an ad-
versarial example whose model confidence is as large as
possible. Then among all possible adversarial examples,
we pick one that has the largest confidence. We collect
all the adversarial x? into A. Note that | A | ≤ |N | be-
cause for each x ∈ N we can generate at most one x? (or
we do not find any). Now, for a confidence parameter p,
we reject a point x as adversarial by “F (x) < p,” where
F is the base ResNet model that is adversarially trained
in (Madry et al., 2017). A core metric we report is Adver-
sarially Wrong Predictions Ratio (AWPR), the fraction of
points where we can generate adversarially wrong predic-
tions. Without the rejection rule, the AWPR is | A |/| N |,
and we hope that this ratio decreases significantly after ap-
plying the rejection rule. Meanwhile, we also hope that the
recall of natural points is large enough which means that
we do not reject many natural points.

1The PGD attack used in (Madry et al., 2017) used 1 random
start and 20 iterations on CIFAR.
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AWPR (original) AWPR (w/ rejection) Recall of N
η = .010, p = .90 11% 2.2% 86.7%
η = .010, p = .95 11% 1.1% 82.5%
η = .010, p = .99 11% 0.0% 72.6%
η = .015, p = .90 14% 5.4% 89.6%
η = .015, p = .95 14% 2.9% 85.6%
η = .015, p = .99 14% 0.3% 75.9%
η = .020, p = .90 21.7% 14.7% 90.0%
η = .020, p = .95 21.7% 9% 85.7%
η = .020, p = .99 21.7% 3.8% 75.4%
η = .030, p = .90 34.7% 29.7% 90.0%
η = .030, p = .95 34.7% 26.8% 86.0%
η = .030, p = .99 34.7% 16.0% 76.5%

Table 2. Results on rejecting adversarial examples with an adversarially trained model. We report adversarially-wrong-prediction-ratio
(AWPR) before applying rejection rule, AWPR after applying rejection rule, and the recall of natural points.

AWPR (original) AWPR (w/ rejection) Recall of N
η = .010, p = .90 99.3% 99.1% 97.2%
η = .010, p = .95 99.3% 99.1% 96.2%
η = .010, p = .99 99.3% 98.9% 92.6%

Table 3. Results on rejecting adversarial examples with a natural model. We only tested η = .010, the weakest setting of `∞ attack, and
AWPRs are very high, even for p = .99. This indicates that the behavior of confidence of a natural model is poor.

Table 2 and 3 present the results for adversarially and natu-
rally trained models, respectively. In summary: (1) For ad-
versarially trained models, rejection based on confidence
gives a statistically significant reduction in AWPR, while
having a good recall of retaining natural points. While
the results are far from being perfect, they give encourag-
ing evidence that our analysis of Madry et al.’s formula-
tion on confidence holds non-trivially in practice. (2) By
contrast, rejection based on confidence has no effect at all
with a natural model. Even we set p = 0.99, there are
many adversarial examples that reach such confidence us-
ing the weakest attack radius .01 in our experiments. This
demonstrates that adversarial training prepares confidence
in a nontrivial way as a discriminator. (3) Finally, we notice
that for the adversarially trained model we used, the effec-
tiveness of the rejection rule drops significantly as we ap-
proach the .03 boundary. In particular, we are able to find
many more high-confidence adversarial points there than
neighborhoods of smaller radius.

Defending against adversarial examples using MCNξ. We
implemented a version of MCNξ and test its performance
against `∞ attacks. We sample a set N of 1000 random
test points where the base model produces correct predic-
tions. We use PGD attacks of 1000 iterations to increase
the model confidence for target labels as much as possible.

With the attack, we first generate 9000 adversarial exam-
ples x? for each x ∈ N and each of the 9 incorrect target
labels. For a number of cases, the attack achieves different
prediction CF (x?) (label change), and for the other cases,
the attack fails to change the prediction but reduces predic-
tion confidence of the correct label (confidence reduction).

Our implementation of MCNξ solves (5) using the PGD at-
tack with a different setting (`∞ radius ξ, no random start,
and 500 iterations). Table 4 gives results where we re-
port top-2 accuracy. That is, let x1, . . . ,x10 be the 10
points perturbed by MCNξ for an input x with correct label y,
sorted by the base model confidence ‖F (x1)‖∞ ≥, . . . ,≥
‖F (x10)‖∞. We count the number of following two cases:
(i) y = CF (x1), (ii) y 6= CF (x1) but y = CF (x2). In
summary: (1) MCNξ recovers a nontrivial number of correct
predictions from adversarial examples with changed labels,
without changing the originally correct predictions of ad-
versarial examples with reduced confidences. (2) Specifi-
cally, for η = ξ = 0.010, MCNξ produces correct predic-
tions of 94 label-changed adversarial examples, and wrong
predictions for 27 confidence-reduced adversarial exam-
ples. For η = ξ = 0.015, MCNξ produces correct pre-
dictions for 114 label-changed adversarial examples, and
wrong predictions for 20 confidence-reduced adversarial
examples. (3) Interestingly, for most cases (99.44% for
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η = ξ = 0.010 η = ξ = 0.015

Label change Confidence reduction Label change Confidence reduction
1st confident point 94 8621 114 8511
2nd confident point 208 27 260 20

Other points 50 0 66 0
Missing 0 0 29 0

Total 352 8648 469 8531

Table 4. MCNξ results. 9000 adversarial examples are divided into label change (column 1 and 3) and confidence reduction (column 2
and 4). Row 1 and 2 give the number of adversarial examples that MCNξ succeeded to narrow down to two most confident predictions
over 10 perturbed points. Row 3 gives the number of cases where the correct label is not in the two most confident points, but is one of
the model predictions over 10 perturbed points. Row 4 gives cases where all model predictions on MCNξ perturbed points are wrong.

η = ξ = 0.010, 98.94% for η = ξ = 0.015), the correct
label y can be predicted from the perturbed points x1,x2

with two highest confidences.

Potential Problems with Madry et al.’s Formulation.
Our experiments demonstrate that as attack radius in-
creases, the effectiveness of confidence decreases, and it
almost completely loses control at the .03 boundary. To
this end, we first notice that `∞ ball of radius .03 is very
large: with an attack of radius .03 it is possible to craft a
good adversarial point, but one can also arrive at a almost
random noise (by perturbing each position of the input im-
age by .03 for example). Given such a large ball to enforce
robustness, we observe two potential problems with Madry
et al.’s formulation (1): (1) gradient descent is not effec-
tive enough to search the space. We note that the inner
maximum of (1) is solved by gradient descent, so probably
one can only search a small neighborhood, and make con-
fidence good there. (2) a more fundamental problem is that
enforcing (1) in a large `∞ ball is too much to hope for,
because this ball contains random noise anyway. It seems
more reasonable to us that one should only encourage (1)
in a relatively small neighborhood (say .01), which builds a
trusted region, and then encourage low-confidence outside
the neighborhood, so following confidence information one
can hope to go back to trusted regions.

6. Related Work
(Szegedy et al., 2013) first observed the susceptibility of
deep neural networks to adversarial perturbations. Since
then, a large body of work have been devoted to study
hardening neural networks for this problem (a small set of
work in this direction is (Goodfellow et al., 2014; Paper-
not et al., 2016b; Miyato et al., 2017)). Simultaneously,
another line of work have been devoted to devise more ef-
fective or efficient attacks (a small set of work in this di-
rection is (Moosavi-Dezfooli et al., 2016; Papernot et al.,
2016a; Carlini & Wagner, 2017a)). Unfortunately, there is
still a large margin to defend against more sophisticated at-

tacks, such as Carlini-Wagner attacks (Carlini & Wagner,
2017a). For example, while the recent robust residual net-
work constructed by (Madry et al., 2017) achieves encour-
aging robustness results on MNIST, on CIFAR10 the accu-
racy against a strong adversary can be as low as 45.8%.

A line of recent research investigated using a generative
model to “explicitly recognizing” natural manifolds to de-
fend against adversarial perturbations. Examples of this in-
clude the robust manifold approach by (Ilyas et al., 2017),
and an earlier proposal of MagNet by (Meng & Chen,
2017). Similar to our work, there is a discriminator that can
distinguish between right and wrong predictions. However,
there is a crucial difference: In generative model approach,
one tries to distinguish between points on the manifolds
and those that are not, and thus only indirectly discriminate
between right and wrong predictions. By contrast, our con-
fidence discriminator directly discriminates between right
and wrong predictions. Therefore, one can think of our ap-
proach as a “discriminative” alternative to the “generative”
approach studied in robust manifold approach and Mag-
Net, and thus seems easier to achieve. In fact, MagNet has
already been successfully attacked by (Carlini & Wagner,
2017b) by exploiting gaps between the generative discrim-
inator and the underlying classifier.

7. Conclusion
In this work we take a first step to study structural infor-
mation induced by an adversarial training to further rein-
force adversarial robustness. We show that confidence is a
provable property, once one solves the adversarial training
objective of Madry et al. well, to distinguish between right
and wrong predictions. We empirically validate our anal-
ysis and report encouraging results. Perhaps more impor-
tantly, our analysis and experiments also point to potential
problems of Madry et al.’s training, which we hope, may
stimulate further research in adversarial training.
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